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Abstract. A lot of recent research on content-based P2P searching for file-sharing
applications has focused on exploiting semantic relations between peers to facili-
tate searching. To the best of our knowledge, all methods proposed to date suggest
reactiveways to seize peers’ semantic relations. That is, they rely on the usage
of the underlying search mechanism, and infer semantic relations based on the
queries placed and the corresponding replies received. In this paper we follow a
different approach, proposingoaoactivemethod to build a semantic overlay. Our
method is based on an epidemic protocol that clusters peers with similar content.
It is worth noting that this peer clustering is done in a completely implicit way,
that is, without requiring the user to specify his preferences or to characterize the
content of files he shares.

1 Introduction

File sharing peer-to-peer (P2P) systems have gained enormous popularity in recent
years. This has stimulated significant research activity in the area of content-based
searching. Sparkled by the legal adventures of Napster, and challenged to defeat the
inherent limitations concerning the scalability and failure resilience of centralized sys-
tems, research has focuseddatentralizedolutions for content-based searching, which

by now has resulted in a wealth of proposals for peer-to-peer networks.

In this paper, we are interested in those group of networks in which searching is
based on grouping semantically related nodes. In these networks, a node first queries its
semantically close peers before resorting to search methods that span the entire network.
In particular, we are interested in solutions where semantic relationships between nodes
are captured implicitly. This capturing is generally achieved through analysis of query
results, leading to the construction of a losamantic listat each peer, consisting of
references to other, semantically close peers.

Only very recently, an extensive study has been published on search methods in
peer-to-peer networks, be they structured, unstructured, or of a hybrid form [1]. This
study reveals that virtually all peer-to-peer search methods in semantic overlay networks
follow an integrated approach towards the construction of the semantic lists, while at the
same time accounting for changes occurring in the set of nodes. These changes involve
the joining and leaving of nodes, as well as changes in a node’s preferences.

The problem we are faced with is that the construction of semantic lists should re-
sult in highly clustered overlay networks. These networks excel for searching content



when nothing changes. However, to handle dynamics requires the discovery and prop-
agation of changes that may happeywherdn the network. For this reason, overlay
networks should also reflect desirable properties of random graphs and complex net-
works in general [2, 3]. These two conflicting demands generally lead to complexity
when integrating solutions into a single protocol.

Protocols for content-based searching in peer-to-peer networks should separate these
concerns. In particular, we advocate that when it comes to constructing and using se-
mantic lists, these lists should be optimized for search only, regardless of any other
desirable property of the resulting overlay. Instead, a separate protocol should be used
to handle network dynamics, and provide up-to-date information that will allow proper
adjustments in the semantic lists (and thus leading to adjustments in the semantic over-
lay network itself).

In this paper we propose such a two-layered approach for managing semantic over-
lay networks. The top layer contains a gossip-based protocol that strives to optimize
semantic lists for searching only. The bottom layer offers a fully decentralized service
for delivering, in an unbiased fashion, information on new events, similar in nature to
the peer-sampling service recently described in [4]. Again, this service is implemented
using a gossip-based protocol (which, by the way, is very different from those described
in [4]).

Our main contribution is that we demonstrate that this two-layered approach leads to
high-quality semantic overlay networks. We substantiate our claims through extensive
simulations using traces collected from the eDonkey file-sharing network [5].

The paper is organized as follows. We start with presenting our protocols in the
next section, followed by describing our experimental setup in Section 3. Performance
evaluation is discussed in Section 4, followed by an analysis of consumed bandwidth in
Section 5. We conclude with a discussion in Section 6.

2 The Protocol

2.1 Outline

In our model each peer maintains a dynamic list of semantic neighbors, calkst its
mantic view of fixed small size. A peer searches for a file by first querying its semantic
neighbors. If no results are returned, the peer then resorts to the default search mecha-
nism.

Our aim is to organize the semantic views so as to maximize the hit ratio of the first
phase of the search. We will call this teemantic hit ratioWe anticipate that the prob-
ability of a neighbor satisfying a peer’s query is proportional to the semantic proximity
between the peer and its neighbor. We aim, therefore, at filling a peer’s semantic view
with its ¢ semantically closest peers out of the whole network.

We assume the existence oamantic proximity functio(Fp, Fg), which given
the file listsF> and Fq of peersP andQ, respectively, provides a numeric metric of
the semantic proximity between the two peers. The more semantically similar the file
lists of P andQ are, the higher the value &Fp,Fq). We are essentially seeking to
pick peersQ;,Qo,...,Q, for peerP’s semantic view, such that the s@ilS(P, Q)is
maximized.

We assume that the semantic proximity function exhibits some sort of transitivity,
in the sense that P andQ are semantically similar to each other, and so@rand



R, then some similarity betwee andR is likely to hold. Note that this transitivity

does not consist a hard requirement for our system. In its absence, semantically related
neighbors are discovered based on random encounters. If it exists though, it is exploited
to dramatically enhance efficiency.

2.2 Design Motivation

From our previous discussion, we are seeking a means to construct, for each node, a
semantic view from all the current nodes in the system. There are two sides to this
construction.

First, based on the assumption of transitivity in the semantic proximity fun&ion
a peer should explore the semantically close peers that its neighbors have found. In
other words, ifQ is in P's semantic view, an® is in Q's view, it makes sense to check
whetherR is also semantically close . Exploiting the transitivity inS should then
quickly lead to high-quality semantic views.

Second, it is important thatll nodes are examined. The problem with following
only transitivity is that we eventually will be searching only in a single semantic clus-
ter. Similar to the special “long” links in small-world networks [6], we need to establish
links toothersemantically-related clusters. Likewise, when new nodes join the network,
they should easily find an appropriate cluster to join. These issues call for a randomiza-
tion when selecting nodes to inspect for adding to a semantic view.

In our design we decouple these two aspects by adopting a two-layered set of gossip
protocols, as can be seen in Figure 1. The lower layer, célleti.oN [7], is respon-
sible for maintaining a connected overlay and for periodically feeding the top-layer
protocol with nodes uniform randomly selected from the network. In its turn, the top-
layer protocol, called/ICINITY, is in charge of focusing on discovering peers that are
semantically as close as possible, and of adding these nodes to the semantic views.

Peer R Peer P Peer P’
Random) (sem. close to P)

Feed Feed Feed
Sem View Sem View Sem View
Vicinity Vicinity Vicinity
Feed Feed Feed
Vcnly Vcni(y Vcn(y
Cyclon Cyclon Cyclon

Fig. 1. The two-layered framework

2.3 Gossiping Framework

All information exchange between peers is carried out by meamgosdip itemsor
simply items A gossip item created by peBris a tuple containing the following three
fields:

1. P’s contact information (network address and port)



2. The item’s creation time
3. Application-specific data; in this cag¥s file list

Each node maintains locally a number of items per protocol, called the protocol's
view. This number is the same for all items, and is called the protocigis sizgc, for
VICINITY, andc; for CYCLON).

Figure 2 presents a generic skeleton forming the basis forWatiniTy andCy-

CLON gossiping protocols. Each node runs two threadsaétiveone, which periodi-
cally wakes up and initiates communication to another peer, grassiveone, which
responds to the communication initiated by another peer.

The functions appearing in boldface, namsdyectPeer() , SelectltemsToSend()
andselectlitemsToKeep() form the threehooksof this skeleton. Different proto-
cols can be instantiated from this skeleton by implementing specific policies for these
three functions, in turn, leading to different emergent behaviors.

The number of items exchanged in each communication is predefined, and is called
the protocol’'sgossip lengti{gy, for VICINITY, andg. for CYCLON).

[¥* Active thread ***/

/I Runs periodically every T time units

q = selectPeer()

myltem = (myAddress, timeNow, myFileList)
buf_send = selectitemsToSend()

send buf_send to q

receive buf_recv from g

view = selectltemsToKeep()

[*** Passive thread ***/

/I Runs when contacted by some peer
receive buf_recv from p

myltem = (myAddress, timeNow, myFileList)
buf_send = selectltemsToSend()

send buf_send to p

view = selectitemsToKeep()

Fig. 2. Epidemic protocol skeleton

ForVICINITY, we chose the policies shown in Figure 3(a). We note thaRire-
DOM protocol resembles T-Man [8]. The only difference is that in T-Man peers ex-
change theiwholeviews, instead of just a subset of them. As we discuss beaw,
GRESSIVELYBIASED will turn out to be an excellent choice for forming semantic clus-
ters.

Note thatselectlitemsToKeep() takes into accoun€ycLON'’s cache too in
selecting the beg, items to keep. This is the default link between the two layers.

For CycLON, we made the choices shown in Figure 3®YyCLON is a protocol we
previously developed, and which is extensively described and analyzed in [7].

Effectively, whatselectltemsToSend() andselectlitemsToKeep() es-
tablish is arexchangef some neighbors between the caches of the two communicating



Hook Description
selectPeer() Select peer from the item with the oldest timestamp
selectltemsToSend()
RaNDOM |[Randomly seleaty, items
BiASED|Select thegy items of nodes semantically closest to the selected peger
AGGRESSIVELYBIASED|Select thegy items of nodes semantically closest to the selected| peer
from theVICINITY view andthe CYCLON view
selectltemsToKeep() Keep thecy, items of nodes that are semanticallpsest out of items in
its current view, items received, and items in the ld@&atLON view. In
case of multiple items from the same node, keep the one with thg most
recent timestamp.

(@)

Hook Description

selectPeer() Select peer from the item with the oldest timestamp

selectltemsToSend()
active threagselect own item and randomgy. — 1 others from theCyCLON view

passive threaiRandomly seleat; items from theCyCLON view

selectltemsToKeep() Keep allg; received items, replacing (if needed) theones selected to

send. In case of multiple items from the same node, keep the ong with

the most recent timestamp.

(b)

Fig. 3. The chosen policies for (a) théicINITY protocol and (b) th&€ycLoN protocol.

peers. In addition to that, the selected peer’s item in the initiator's cache is always re-
moved, but the initiator's (new) item is always placed in the selected peer’s cache.

CyCLON creates an overlay with completely random, uncorrelated links between
nodes, such that the in-degree (number of incoming links) is practically the same for
each node. Importantly, it can achieve this property fairly quickly even when a small
number of items (such as 3 or 4) is exchanged in each communication, even for large
caches of several dozens of items. Therefore, it is ideal as a lightweight service that can
offer a node a randomly selected peer from the current set of nodes.

3 Experimental Environment and Settings

All experiments presented here have been carried out with PeerSim [9], an open source
simulator in Java for P2P protocols, developed at the University of Bologna.

To evaluate our protocol, we used real world traces from the eDonkey file sharing
system [10], collected by Le Fessant et al. in November 2003 [5]. A set of 12,000 world-
wide distributed peers along with the files each one shares is logged in these traces. A
total number of 923,000 unique files is being collectively shared by these peers.

In order to simplify the analysis of our system’s emergent behavior, we determined
equal gossiping periods for both layers. More specifically, once eVetiyne units
each node initiates first a gossip exchange with respect to its bo@s@LON) layer,
immediately followed by a gossip exchange at its t@pqiNITY ) layer. Note that even



though nodes initiate gossiping at universally fixed intervals, they are not synchronized
with each other.

Even though both protocols are asynchronous, it is convenient to introduce the no-
tion of cyclesin order to study their evolutionary behavior with respect to time. We
define a cycle to be the time period during whegdchnode has initiated gossiping ex-
actly once Since each node initiates gossiping periodically, once evdime units, a
cycle is equal td time units.

A number of parameters had to be set for these experiments, listed here.

Proximity Function S We chose a rather simple, yet intuitive proximity function to
test our protocol with. The proximit$ between two nodeB andQ, with file lists
Fp andFq respectively, is defined as the number of files that lay in both lists. More
formally: S(Fp,Fg) = |Fp( Fg|. As stated in 2.1, the semantically closer two nodes
are, the higher the value &fis. Note that our goal was to demonstrate the power
of our gossiping protocol in forming a semantic network based gmoximity
function. Even though much richer proximity functions could have been applied, it
was out of the scope of this paper.

Semantic view siz¢ In all experiments the semantic view consisted of the 10 seman-
tically closest peers in théiCINITY cache. As shown in [11], a semantic view size
of £ = 10 provides a good tradeoff between the number of nodes contacted in the
semantic search phase and the expected semantic hit ratio.

Cache sizeFor the cache size selection, we are faced with the following tradeoff for
both protocols. A large cache size provides higher chances of making better item se-
lections, and therefore accelerate the construction of (near-)optimal semantic views.
On the other hand, the larger the cache size, the longer it takes to contact all peers
in it, resulting in the existence of older—and therefore more likely to be invalid—
links. Of course, a larger cache also takes up more memory, although this is gener-
ally not a significant constraint nowadays.

Considering this tradeoff, and after a set of experiments that cannot be presented
due to space limitations, we fixed the cache size to 100 as a basis to compare dif-
ferent configurations. When both Vicinity and Cyclon are used, they are allocated
50 cache entries each.

Gossip length The gossip length, that is, the number of items gossiped per gossip ex-
change per protocol, is a crucial factor for the amount of bandwidth used. This
becomes of greater consequence, considering that an item carries the file list of its
respective node. So, even though exchanging more items per gossip exchange al-
lows information to disseminate faster, we are inclined to keep the gossip lengths
as low as possible, as long as the system’s performance is reasonable.

Again, for the sake of comparison, we fixed the total gossip length to 6 items. When
both Vicinity and Cyclon are used, each one is assigned a gossip length of 3.

Gossip periodT The gossip period is a parameter that does not affect the protocol’'s
behavior. The protocol evolves as a function of the number of messages exchanged,
or, consequently, of the number of cycles elapsed. The gossip period only affects
how fast the protocol’s evolution will take place in time. The single constraint is that
the gossip period should be adequately longer than the worse latency throughout
the network, so that gossip exchanges are not favored or hindered due to latency
heterogeneity. A typical gossip period for our protocol would be 1 minute, even
though this does not affect the following analysis.



4 Performance Evaluation

4.1 Convergence speed

avg # common files per sem. neighbor
avg # common files per sem. neighbor

o0 700 s
cycles
(@ (b)

Fig. 4. (a) Convergence of sem. views’ quality. (b) Evolution of semantic views’ quality for a
sudden change in all users’ interests at cycle 550.
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To evaluate the convergence speed of our algorithm, we test how quickly it finds
nodes having files in common. The proximity function’s objective is for each node to
discover thel peers that have the most common files with it. Therefore, a good metric
of the progress towards this goal is the average number of common files between a
node and each one of its semantic neighbors. From our traces, we measured that in the
optimal organization, this metric has a value of 3.88.

Figure 4(a) shows this metric as a function of the cycle for four distinct configura-
tions. In favor of comparison fairness, the cache size and gossip length are 50 and 3,
respectively, in each layer, for all configurations. The only exception is the first config-
uration, which has a single layer. In this case, the cache size and gossip length are 100
and 6, respectively. All experiments start with each node knowing 5 random other ones,
simply to ensure initial connectivity in a single connected cluster.

In the first configurationRANDOM VICINITY is running stand-alone. The progress
of the semantic views’ quality is rather steep in the first 100 cycles, but as nodes gradu-
ally concentrate on their very own neighborhood, getting to know new, possibly better
peers becomes rare, and progress slows down.

In the second configuration, a two-layered approach consistiRgebom VICIN-

ITY andCYCLON is running. The slow start compared to stand-aldheINITY is a
reflection of the smalleyiCINITY cache (3 as opposed to 6). However, the two-layered
approach’s advantage becomes apparent later, @kenonN keeps feeding thRAN-

DOM VICINITY layer with new, uniform randomly selected nodes, maintaining a higher
progress rate, and outperforming stand-algmeINITY in the long run.

In the third configurationBIASED VICINITY demonstrates its contribution, as progress
is significantly faster in the initial phase of the experiment. This is to be expected, since
the items sent over in eadIASED VICINITY communication, are the ones that have
been selected as the semantically closest to the recipient.



Finally, in the fourth configuratiorPAGGRESSIVELYBIASED VICINITY keeps the
progress rate high even when the semantic views are very close to their optimal state.
This is due to the broad random sampling achieved by this version. In every commu-
nication, a node is exposed to the best peers out shBAomones, in addition to 50
peers from its neighbor. In this way, semantically related peers that belong to separate
semantic clusters quickly discover each other, and subsequently the two clans merge
into a single cluster in practically no time.

4.2 Adaptivity to changes of user interests

In order to test our protocol’s adaptivity to dynamic user interests, we ran experiments
where the interests of some users changed. We simulated the interest change by picking
a random pair of nodes and swapping their file lists in the middle of the experiment.
At that point, these two nodes found themselves with semantic views unrelated to their
(new) file lists, and therefore had to gradually climb their way up to their new semantic
vicinity, and replace their useless links by new, useful ones.

Once again, we present the worst case —practically unrealistic— scenaailh, of
nodes changing interests at once, at cycle 550 of the experiment of figure 4(a). The
evolution of the quality of the semantic views (using the metric introduced in 4.1) after
the moment when all nodes change interests, is presented in figure 4(b). The faster con-
vergence compared to figure 4(a) is due to the fact that views are already fully filled up
at cycle 550, so nodes have more choices to start looking for good candidate neighbors.

Even though this scenario is very unrealistic, it demonstrates the power of our pro-
tocol in adapting to even massive scale changes. This adaptiveness is due to the priority
given to newer items iselectltemsToKeep() , which allows a node’s items with
updated semantic information to replace older items of that node fast.

4.3 Effect on Semantic Hit Ratio

In order to further substantiate our claim that semantic based clustering endorses P2P
searching, we conducted the following experiments. A randomly selected file was re-
moved fromeachnode, and the system was run considering proximity based on the
remaining files. Then, each node did a search on that special file. We measured the
semantic hit ratio to be over 36% for a semantic view of size 10.

Figure 5 presents the semantic hit ratio as a function of the cycle. Three experi-
ments are shown, with gossip lengths bamth layers set to 1, 3, and 5. Note that the
hit ratio was autonomously computed in each cycle, without affecting the mainstream
experiment’s state.

5 Bandwidth Considerations

Due to the periodic behavior of gossiping, the price of having rapidly converging pro-
tocols may inhibit a high usage of network resources (i.e., bandwidth).

In each cycle, a node gossips on average twice (exactly once as an initiator, and on
average once as a responder). In each gdssigy + gc) items are transferred to and
from the node, resulting in a total traffic 8f (g, + gc) items for a node per cycle. An
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Fig. 5. Semantic Hit Ratio, for gossip lengths 1, 3, and 5 in each layer.

item’s size is dominated by the file list it carries. A single file is identified by its 128-
bit (16-byte) MD4 hash value. Analysis of the eDonkey traces [5] revealed an average
number of 100 files per node (more accurately, 99.35). Therefore, a node’s file list takes
on average 1,600 bytes. So, in each cycle, the total number of bytes transfesireti
fromthe node i, 400- (gy + gc).

For gy = gc = 3, the average amount of data transferred to and from a node in one
cycle is 38,400 bytes, while fay, = gc = 1, it is just 12,800. Considering the gossip
period T equal to 1 minute, this translates to an average bandwidth of 640 and 213
bytes per second, respectively. Wih = g. = 3 the system adapts a little faster to
changes, but if bandwidth is of high concega,= g. = 1 can also provide very good
results. Note that with a period of 1 minute, in the first 8 minutes we reach 85% of the
optimal semantic hit ratio, having roughly 30% of all requests handled by the semantic
neighbors.

We consider such a bandwidth consumption to be rather small, if not negligible
compared to the bandwidth used for the actual file downloads. It is, in fact, a small
price to pay for relieving the default search mechanism from about 35% of the search
load.

6 Discussion

To the best of our knowledge, all earlier work on implicit building of semantic overlays
relies on using heuristics to decigéhich of the peers that served a node recently are
likely to be useful again in future queries [12, 13, 11].

However, all these techniques inhibit a weakness that challenges their applicability
to the real world. They all assumestatic network, free of node departures, which
is a rather strong assumption considering the highly dynamic nature of file-sharing
communities. Also, it is not clear how they perform in the presence of dynamic user
preferences.

Regarding proximity-based P2P clustering, our work comes close to T-Man|[8].
However, a key difference is that T-Man assureatinuousproximity metrics. That
is, every node can poirgny other node to the right direction. This is not true in the
problem we faced, i.e. in the case of completely unrelated peers. We dealt with it by
harnessin@gCycLON’s randomness. This renders our solution more generic. Moreover,



T-Man assumes a preconstructed almost random graph to start with. We make no such
assumptions.

Another key difference is that T-Man aims at fixing an overlay’s links to the optimal
ones, that is, the ones that minimize a given energy function. Our work aims at continu-
ously exchanging links, so that the optimal ones become known relatively soon to each
node, but do not remain static links of this node.

Concluding, in this paper we introduced the idea of applying epidemics to build and
dynamically maintain semantic lists in a large-scale file-sharing system. Specifically,
we showed that using a two-layered approach combining two epidemic protocols is the
appropriate way to build such a service. Finally, we presented a fast converging, highly
adaptable, yet lightweight epidemic-style solution to this problem.
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